
hr. J. Hea Mass Trsmj~i. Vol. 35, No. 8, pp. 2CtiS-2016, 1992 
Printed in Great Britain 

~17-93i0~92s5.~+0.~ 
0 1992 Pergamon Fkss Ltd 

Forced convection film boiling in the stagnation 
region of a molten drop and its application to 

vapour explosions 
T. R. FODEMSKI 

NNC Ltd, PWR Systems Dept., Booths Hall, Chelford Road, Knutsford, 
Cheshire WA16 SQZ, U.K. 

(Received 24 June 199 1 and in final form 15 July 199 1) 

Abstract-This work was undertaken as part of an investigation into the heat transfer mechanism related 
to thermal explosion. The theoretical model of forced convection film boiling in the stagnation point 
region of an axi-symmetrical molten drop is presented. The model is particul~ly relevant to the coarse 
pre-mixing stage of vapour explosion : it takes account of the fact that, at this stage, the hot substance is 
molten. Stagnation point momentum (Falkner-Skan) and energy equations, for cold and hot liquids 
and for the vapour layer, were solved numerically, with a wide range of boundary-matching conditions at 
the interfaces. The model presented, by covering a wide range of the conditions and parameters, is more 
general than the cases discussed in other publications. For this reason the results can be applied not only 
to the coarse pre-mixing stage of vapour explosion, but also to other situations, where three-phase 

forced convection occurs on an axi-symmetrical body. 

1. INTRODUCTION 

THJZ ANALYSIS of vapour explosion has been a 
subject of interest over many years. This phenomenon 
sometimes occurs when hot (molten) material mixes 
with more volatile liquid. To be precise vapour 
explosion can be considered as a subset of different 
outcomes of such a mixing. It is, however, most 
dangerous, resulting in massive rapid vapour gener- 
ation, accompanied by destructive pressure wave and 
mechanical work upon the surroundings. The possi- 
bility that this phenomenon might occur in liquid- 
cooled nuclear reactors, as a result of serious reactor 
core overheating 11, 21, emphasizes its impo~an~ 
and has been the reason for extensive investigations 
(although it is fair to say that the earliest work was 
initiated by the metallurgical industry; this type of 
explosion has also been recorded in liquefied natural 
gas and paper industries and is known to occur when 
molten lava from volcanic eruptions encounters 
water). 

In the case of liquid-cooled nuclear reactors, under 
some circumstances, the integrities of reactor vessel 
and/or containment could be challenged 12, 31 with 
the possible release of substantial quantities of fission 
products to the environment. Although such possi- 
bilities are considered remote the consequences could 
be so serious that a thorough understanding and 
realistic modelling of crucial stages of the phenom- 
enon are required. 

The conditions which determine whether an 
efficient, energetic and large-scale vapour explosion 
will occur are still rather uncertain [l-4]. How- 
ever, there is a general consensus that one of the pre- 
conditions for a large-scale vapour explosion is the 

occurrence of a so-called coarse pre-mixing stage, 
During this stage hot liquid in the form of particles 
of size l-2 cm is mixed with the pool of liquid coolant. 
There is relative movement between the components, 
but they are prevented from intimate contact by a vap- 
our blanket of the coolant. If this vapour film is stable 
a substantial volume of this coarse mixture might be 
produced. Knowledge of the events in this mixing 
stage, leading to vapour collapse, is particularly 
important. Various models of film boiling heat trans- 
fer from a (hemi-)sphere have been published [S-8]. 
They are applicable to the case of a hot particle in the 
solid state and therefore have limited relevance to the 
coarse pre-mixing stage. 

The model presented here takes account of the fact 
that, at this stage, the hot substance is molten. It 
considers the forced convection film boiling in the 
stagnation point region of an axi-symmetrical molten 
drop. On the basis of this model an accurate value 
of the vapour layer thickness in this region can be 
calculated, together with heat fluxes in the cold and 
hot liquids. This thickness at the stagnation point is 
of paramount significance, since it is minimal there, 
and it also dete~ines the thickness of the vapour 
layer around the whole particle. As shown in refs. 
[9-l l] it also constitutes a main parameter affecting 
stability and vapour film collapse (self-triggered or 
induced by a pressure pulse). 

2. PHYSICAL MODEL 

The analysis in this study is limited to the stagnation 
point region. The main aims of the work are : 
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NOMENCLATURE 

a constant B coefficient, ratio of material parameters 
A stagnation point velocity gradient on interface I 
b constant 6 vapour thickness 

s 
specific heat at constant pressure E emissivity 
coefficient, ratio of heat fluxes rl dimensionless similarity coordinate in fluid 

e(q) function defined by equation (12) 0 angle (in x direction) 
E(q) function defined by equation (13) thermal diffusivity 

f function ; dimensionless vapour thickness 
F(q) dimensionless fluid flow stream function p dynamic viscosity 

(its value at interface I, F(O), describes kinematic viscosity 
evaporation) ; dummy variable 

9 gravitational acceleration P density 
h latent heat cr radiant constant. 
k thermal conduction 
m evaporation mass rate Subscripts or superscripts 
N coefficient in equation (1) ev evaporation 

P pressure f value for molten fuel 
Pr Prandtl number 1 value for liquid coolant 

q heat flux Pot value for a frictionless flow 
R radius of molten fuel drop r radiation 

t(a) dimensionless fluid temperature, defined s saturation value 
by equation (8) V value for vapour coolant 

T temperature W hot surface value 
AT temperature difference X around the particle component 
u velocity Y normal to the particle (interface) 

x9 Y coordinates. component 
co value at infinity (free stream) or far from 

the interface 
Greek symbols 6 value at interface I 

% coefficient, ratio of material parameters normalized, dimensionless value 
on interface II ; reference value or non-shear stress value. 

l detailed analysis of the flow of liquid around the hot surface (this component is not shown in Fig. 1) 
axi-symmetrical particle, in the vicinity of the liquid- 
vapour interfaces, when a significant distortion from 
the frictionless flow case takes place; 

l analysis of the influence of this distortion on the 
heat transfer, particularly on the heat flux at the liquid 
interface ; 

l detailed analysis of the flow and heat transfer in 
the vapour layer-both determined by flows in the 
hot and in the cold liquids and also by heat transfer 
between them ; and 

l theoretical analysis leading to an approximate 
formula for a ‘terminal’ velocity of molten particles 
(surrounded by vapour) free-falling in the liquid. 

The following assumptions have been made : 

1. The liquid flow away from the interface 
approaches the frictionless case (both in the cold and 
hot liquids ; see Fig. 1). 

2. The vapour layer is thin compared with the par- 
ticle size. 

3. The vapour velocity has two components (in the 
x and Y directions). The vapour velocity towards the 

varies from maximum at the coolant interface to zero 
at the hot surface. The flow in the vapour around 
the molten particle occurs as a result of the pressure 
gradient produced by the movement, with constant 
velocity, u,, of this particle through coolant, and also 
because of the motions of the cold and the hot liquids 
at their respective interfaces with the vapour (see I 
and II in Fig. 1). 

4. The coolant interface temperature is constant (at 
the saturation value T,), while its free stream tem- 
perature is q,. 

5. The temperature at the hot particle interface, T,.,, 
is constant and away from this surface (but still in the 
region of the stagnation point) it is T,,. 

6. The vapour layer is transparent to the radiation 
heat flux. All the radiation heat flux is absorbed at the 
liquid-vapour interface (see I in Fig. 1). 

7. All physical properties of the two liquids are 
assumed to be constant and taken for their average 
temperature. 

8. The vapour properties are assumed to be different 
at the three locations : 
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MOLTEN FUEL-VAPOUR 
INTERFACE 

LIQUID-VAPOUR 

Tangential velocity distribution in liquid for potential (frictionless) f Low 

Ff (rf) - dimensionless flow stream function for molten fuel 
Fv (‘&) - 0, ,I u ,, for vapour 

5 (1, ) - #, 8, #I 00 for coolant 

FIG. 1. Three-phase stagnation point arrangement. 
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(i) interface I, taken for the liquid coolant satu- 
ration temperature, T, ; 

(ii) interface II, taken for the hot particle surface 
temperature, T, ; and 

(iii) vapour gap, taken for the average temperature 
across this gap. 

The last assumption attempts to represent the sig- 
nificant variation of the vapour properties over the 
wide temperature range (up to 2900 K). It follows the 
assumption made in ref. [ 121. 

2.1. Momentum equation and velocity field for the 

liquids 

The momentum equation for a fluid in the region 
of the stagnation point, considered in this study, has 
the form : 

F”‘+NF”F-F’*+l =O. (1) 

It is worth noting that the above equation is the special 
form of the Falkner-Skan equation for similar flow, 
giving a solution for boundary layer thickness inde- 
pendent of x (see Fig. 1). Since the solution of equa- 
tion (1) and all boundary conditions (see further dis- 
cussion) are also independent of x, although there is 
transport of mass and enthalpy in the x direction, 
there are no temperature gradients in this direction, 

in the vapour or either of the liquids, in the region of 
validity of the equations. 

For an axi-symmetrical body, considered in this 
study, N = 2 (for a two-dimensional case N = 1). The 
dimensionless flow stream function F depends on the 
dimensionless similarity coordinate I], given by 

‘I= ry J( > c-4 

(this form of the momentum equation is different from 
that used in ref. [7], but equation (1) can be obtained 
by assuming 4(t) = J2F(q) and 5 = J2q in ref. 
[7]). Velocity components in the x and y directions 
are given by 

dF 
u,=Ax--; 

drl 
uy = - JWV(rl) (3) 

and A is the velocity gradient at the stagnation point. 
The inclusion of the possibility of significant 

departure of the liquid flow from the frictionless solu- 
tion, for a thin layer close to the interface, means that 
an analytical solution (as in ref. [7], where only slight 
perturbation close to the interface was assumed) 
cannot be found and only a numerical one can be 
achieved. It is worth mentioning that previously, 
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equation (1) has been solved numerically (see, for 
example, ref. [ 131) for the case of the stagnation point 
flow at a rigid, impermeable wall, i.e. with the fol- 
lowing boundary conditions : 

F(0) = 0; F’(0) = 0 and limFl(co) = 1. (4) 

As was pointed out in ref. [7], the case of a fluid-fluid 
interface is different from that of a fluid-rigid wall. 
Firstly, the value of F(0) # 0 (if, for example, intense 
evaporation were to take place) and, secondly, the 
value of F’(0) is not zero. Because equation (1) is of 
third order, it is obvious that for an assumed value 
of F(0) there is one value of F”(0) corresponding 
to each given value of F’(0) which satisfies the con- 
dition lim F’( co) = 1. Therefore the following can be 
written : 

F”(0) =f[F(O),F’(O)]. (3 

The above relation has been established by numerical 
integration of equation (1). It covers a wide range of 
values of F(0) and F’(O), i.e. from 0 to 1 and from 0 
to 5, respectively. These ranges include cases con- 
sidered in refs. [7,13]. Agreement between values 
quoted in these other studies with the results presented 
here, in the ‘overlapping’ ranges of F and F’, is excel- 
lent. For example, boundary conditions (4) were 
found to be satisfied for F” = 1.3119 against 1.312 
quoted in ref. [ 131. It was also found that the following 
algebraic formula : 

F” = (a, +a,F+a3F2)(1 -F’) 

x,/(1 +b,F’(l +b,F+b,F*)) (6) 

where 

a, = 1.312 a2 = 1.2363 a3 = 0.21167 

b, = 0.812 b2 = -1.1374 b3 = 0.46034 

approximates all results obtained within 1.4%. This 
formula is useful in numerical calculations connected 
with any stagnation point flow. 

2.2. Energy equation and temperature field for the 
liquids 

The energy equation for a liquid in the region of 
the stagnation point has the general form 

t”+ N Pr F(q)t’ = 0 (7) 

where 

(8) 

and T,,,, is the interface temperature, and equation (8) 
defines dimensionless fluid temperature. 

The boundary conditions for equation (7) are 

t(0) = 0 and t(m) = 1. 

The general solution of (7) has the form 

(9) 

and 

where 

and 

(10) 

(11) 

(12) 

(13) 

When Pr, the Prandtl number, is known, the dimen- 
sionless temperature gradient expressed by equation 
(10) can be calculated analytically only for the fric- 
tionless case without evaporation from the interface 
(i.e. F(q) = q and F(0) = 0). For this case, the inter- 
face heat flux is expressed by [7, 141 

qpot = 2k (14) 

The temperature difference AT for the liquid coolant 
is (Ts- T,,) = AT, and for the molten drop is 
(Tcm-Tw) = AT,. 

For other, more general cases and for different 
Prandtl numbers, this interface heat flux has been 
calculated numerically and the results are presented in 
Figs. 2 and 3. Figure 2 shows the ratio, d,, of two heat 
fluxes : (i) when F’(0) = 1, but F(0) is in the range of 
0 to 1, and (ii) for the frictionless, without evaporation 
case, i.e. the one expressed by equation (14). This ratio 
shows the effect of the evaporation from the interface 
on the heat flux there, when there is no velocity dis- 
tortion caused by viscous forces. Figure 3((aHf), for 
different Pr) shows the ratio, d2, of the interface heat 
fluxes : (i) for any value of F and F’ in the ranges 0 to 
1 and 0 to 5, respectively, and (ii) for the same value 

5 

1: 
4 2: 
3 2 

2 b.72 

1 0.005 

FIG. 2. Effect of the interface evaporation, F(O), on the 
normalized liquid interface heat flux, for different Pr 

numbers. Note that all values are for F’(0) = 1. 
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of F as before, but with F’ = 1. The combined effect 
of 

l the viscous forces (which affect the velocity dis- 
tribution in the vicinity of the interface), and 

l the evaporation from the interface (which in- 
creases the velocity component towards this interface) 

on the interface heat flux in the liquid, in comparison 
to that given by (14), is therefore expressed by the 
product d, d,. 

2.3. Velocityjeldfor the vapour layer 
The same momentum equation (1) describes the 

vapour flow in the stagnation point region of the 
vapour layer, but boundary conditions are more com- 
plicated than before. According to assumption 3 
the coolant flow ‘drives’ not only the vapour flow but 
also, through the vapour, the flow in the molten drop. 

It was assumed that the pressure gradients in all fluids 
in the stagnation point region are the same ; therefore 
the following can be written : 

p,A: = p,A,2 = pfA;. (15) 

Strictly speaking this assumption is valid for fluid 
jets meeting to form a plane interface at the stagnation 
point (such geometry was considered, for example, in 
ref. [ 131). However, the same equation (15) is used for 
the present model as it has been used for other cases 
with fluids forming an axi-symmetrical/spherical 
interface (see, for example, refs, 16, 7, 13-151). This is 
an approximation, since for a convex interface the 
pressure in the inside medium is increased by the sur- 
face tension contribution. There are two reasons why 
this simplificarion is still in the present analysis : 

1. The exact radius of curvature (of a molten drop, 

d;q’qtio)., lb) 

2.0 
Prs0.72 

(4 *;q’%m., 

1.10 
Pr=O.O05 

ml I I I I , 1 I I I I 
F(O)_ 

0 0.5 1.0 

(c) 

i 

*;q’%o).l 

2.0 
, 

Pr=l 

0.5 1 1 I 1 , a I 1 I F(O)_ I 05 I I I I, I b I I ( F(O)+ 

0 0.5 I.0 0 0.5 1.0 

0 05 1.0 

'**-q%o)., (4 

2.0- 

Pr=2 

1.5 

:s& 

T= 

/' 

FIG. 3. Effect of the interface evaporation, F(O), and the interface tangential velocity. F’(O). on the 
normalized liquid interface heat flux, for different Pr. 
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FIG 3.-Continued. 

(f) 

at the stagnation point) can only be found by a com- 
plete solution of the flow field inside the drop and 
its interaction with the entire outside fluids. This is, 
however, outside the scope of this work. 

2. The reliable value of surface tension for molten 
UOz is hardly known. (It is also important to remem- 
ber that the variation of this surface tension, with the 
temperature close to the freezing point, can result in 
additional tangential force on the interface. Also, this 
effect, apart from lack of data, is again outside the 
scope of the presented work.) 

For the molten drop case considered in this study, 
the full equation (1) was solved numerically, with 
equation (15) and the following boundary-matching 
conditions on the interfaces I and II, respectively 

F&9 = ~~~(0) Ctri:) = ~,~~(O) 

WI&) = a Ibid (16) 

F,(O) = 0 F:(O) = a,F;(O) F;(O) = -a,F;(O) 

(17) 

(18) 

P: = PfIP” r: = &I& (19) 

Relations (16) and (17) express equality of mass fluxes 
and of appropriate velocity and shear stress com- 
ponents on both sides of each interface. Note that the 
evaporation flux is present on interface I, but interface 
II was assumed to be impermeable. 

The results of the momentum equation integration 
for the vapour layer cannot be presented in general 
and compact form. There are two reasons for this. 
Firstly, material parameters of ail fluids have to be 
specified, i.e. the values of coefficients a,, Q. B, and 

,GZ (they vary considerably for any fluid pair and also 
with temperature and pressure). Secondly, the vapour 
velocity profile strongly depends upon the vapour 
thickness. Since this thickness results from the heat 
balances on both interfaces, this practically means 
that momentum (1) and energy (6) equations have to 
be solved simultaneously. As in ref. f7], the vapour 
thickness 6 is related to the vapour similarity coor- 
dinate, pjv, and normalized vapour thickness, A,, both 
dimensionless, in the following way : 

q,(S) = q: = &/(2A,/v,) qt = z;t*/(p:)‘;* (20) 

1 = 4/(4/(2~-J) & = J(PrJp?) 

& = Ai& = 6 Jb4~,l(k)). (21) 

Values lo and A, = 1 have clear physical interpret- 
ation. Both are functions of material parameters 
only (!), and refer to the vapour thickness for which 
velocity distribution, in the vapour gap, is perpen- 
dicular to the liquid-vapour interface. For such distri- 
butions there is no shear on this interface and, conse- 
quently, the velocity field in the liquid is as for a 
frictionless case [7]. For 1, > 1, liquid is accelerated 
by vapour flow, but for 4, < 1 the situation is 
reversed (i, = 0 is the extreme case of a solid wall). 
In ref. [7] the range of I* was limited to about 3 
(and the hot surface was rigid), but the present 
model, for the coarse pre-mixing stage of vapour 
explosion, does not have any limitation. 

2.4. Temperature field in the vapour layer 
The solution, (10) and (1 I), of the energy equation 

(7), for the vapour, depends upon the dimensionless 
temperature and boundary conditions given by 

tv(rt,) = 
%LJ - Tw 

T, _ T 

I u 
(22) 
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t,(O) = 0 and t,($) = 1 (23) 

where T, is the tempe;ature of the hot interface and 
7’, is the temperature of the vapour-liquid interface 
(saturation temperature). 

As in the liquid, respective integrals can only be 
calculated numerically. The ratio, ds, of the heat fluxes 
on interfaces II, qw, and 1, %, is not equal to 1 since, 
in this case, the vapour velocity towards the hot sur- 
face is taken into account. Also the ratio, d.,, of the 
interface I heat flux, q6, and the heat flux calculated 
for simple conduction through stagnant vapour of the 
same thickness is, in general, also not equal to 1. The 
latter is expressed by the relation : 

40 = h(Tw - TM. (24) 

The ratios d3 and d4 depend not only upon the vapour 
layer thickness, 6, but also, through tl,, cc2, @, and &, 
upon material properties. 

The heat balances on the interfaces I and II can be 
written in the following form : 

I:q,+%“=q,+qa; II:q,=q,+q, (25) 

where 

ql = dldt2qlpot ; qey = m,h ; 

m, = P”Q4 = ~~~(2~“V”)~“~~~) 

qr = ~(~~-~~)/(l/E,+l/&f- 1); qa = d,qc 

4f = h7‘pm ; qw = &iS = G&q,. 

Ratios d3 and d4 must be calculated numerically. 
However, when inertia effects can be neglected (this 
is the case at atmospheric pressure for both UOrH,O 
and UO,-liquid Na considered later in the paper), 
solution of the problem is simplified. This case, dis- 
cussed in the Appendix, can also serve as an example 
of the calculation route for the whole problem, i.e. 
simultaneous solution of the momentum and energy 
equations for three fluid phases. 

3. TERMINAL VELOCITY OF THE 

FREE-FALLING MOLTEN DROP 

When a molten drop of high temperature falls 
through a stagnant pool of more volatile liquid, the 
intensive evaporation of the latter takes place. There 
is experimental evidence (examples being refs. f16, 
171) that the wake behind this drop has an almost 
cylindrical shape, as shown in Fig. 4. The full analysis 
of all processes in this wake is a formidable task. 
However, from the wake shape it is obvious that the 
vapour pressure in the equatorial cross-section of the 
drop is very much the same as in the whole wake. 
Assuming that the bottom part of the drop is spherical 
and that the velocity and pressure gradient on the 
liquid-vapour interface (curve between points A and 
S in Fig. 4) follow the appropriate frictionless case 
distributions, one can use the well-known relations 

Vapour 
(coolant) s * 

5 
0 

# 

Liquid 
(coolant) 

hlolten drop 
(fuel) 

I”m; Pea 

FIG. 4. Free-falling molten drop in liquid arrangement. 
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p,+y=const; u, = $u, sin 6 (26) 

and 

p@ -PA = $p,& cos2 0. (27) 

For a free-falling drop : (i) gravitational force and (ii) 
the force exerted on the spherical drop from the fluid 
are equal, i.e. 

z/2 
$cR3p,g = 

s 
2zR sin 8(p, -p,,) R cos 6’ do. 

0 

(28) 

Substituting (27) into (28) 

u, = ,/%64/27)&M,). (29) 

The last formula is approximate, However, it com- 
pares well with the experimental results, quoted in 
refs. [ 16,171 (where molten drops of different sub- 
stances were allowed to fall in pools of different cool- 
ants). Based on this terminal velocity, its gradient at 
the liquid coolant stagnation point, A,, can be 
expressed by 

4. EXAMPLES AND CONCLUSIONS 

4.1. Example of molten U02 dropsfalling in water or 
in liquid sodium 

This section presents numerical results of the model 
discussed in this study, applied to cases of a molten 
UOz drop of 1 cm diameter, free-falling in water 
(which is at pressures of 1 and 150 bar) and in liquid 
sodium (1 bar). The two different pressures for water 
correspond to ex- and in-vessel conditions of PWR 
(the lower pressure for water also corresponds to 
BWR conditions). 

The material properties of molten U02 are difficult 
to find in the open literature. It is worth noting that 
all these properties are affected by fuel burn-up 
and a~umulation of plutonium and fission products. 



This refers pa~i~ularly to the temperature difference 
between the boiling and melting points of IX&, i.e. 
the maximum temperature difference which can exist 
in the molten drop. Information in the literature (ref. 
[17] and also ref. [18]) indicates that this difference 
could be somewhere in the range 5OCl400 K. The 
following material values were used in all the cal- 
culations presented here [ 17, 1 S] : 

pf = 85OOkgm-‘, Prr = 1, 

crt= 0.5k_Ikg-‘K-‘, kr=2Wm-‘EC’. 

and a melting point temperature for UOz of 3000 
K (the molten drop interface II, see Fig. 1, was 
assumed to be always at this temperature). Ail 
coefficients appearing in Section 2.3 (t(, , a*, /II, and 
f12)* approximate terminal drop velocity and its gradi- 
ent at the Iiquid coolant stagnation point (u, and A,, 
calculated from equations (29) and (30), respectively), 
dimensionless vapour thickness, Iz,, emissivity of the 
liquid-vapour interface, e,, and radiative heat flux gt 
for all three cases considered, are presented in Table 
I. Water, steam, liquid and vapour sodium properties 
under high tem~ratures and appropriate pressure 
(see assumptions 7 and 8) were approximated from 
refs. [ 19-221. The maximum liquid coolant and molten 
drop subcoolings (determined by the appropriate 
temperature difference between boiling and melting 
points) are also presented in Table 1 (rows 8 and 9). 

It is worth adding that any uncertainty connected 
with values of material parameters and also with 
simplifications (for example, equation (15)) and their 
importance in the model can be estimated by so-called 
sensitivity studies in which the presented examples 
could be regarded as base cases. 

The results of the calculations are presented in 
Table 1 and in Figs. 5-9. 

Rows 10 and i I of Table 1 give the range of the 
dimensionless normalized vapour thickness, ;I*, and 
(6/R),,, (for the highest value of&), respectively, for 

F; F 

3- 
1 - UO,- H,O lbar 
2 - UC&- H20 150bar 
3 ” Uq- Na lbar 

*... 

0 6 

FIG. 5. Influence of the dimensionless, normalized vapour 
thickness, A*, on the stream function and its derivative 

values, F(O) and P{O). in Iiquid coolant and molten fuel. 

all three cases considered. Since the relation between 
li, and S is linear (see equation (2111, the latter can be 
determined for any value of the former. However, 
realistic conditions of pre-mixing are such that the 
corresponding values of A, are always away from their 
respective bottom limits. The minimum value of 1, 
for water represents the case when the bulk liquid 
coolant temperature is equal to the freezing tem- 
perature Quoted values of (6/R)_,,,aX, for maximum J.,, 
correspond to the case when T,, = T, (see also Fig. 
9). These values also show that assumption 2 is sat- 
isfied in all three cases. 

Figure 5 shows the inlluence of the dimensionle~ 
vapour thickness A, on values of the interface stream 
function, F(O), and its first derivative, F’(O), in the hot 
and cold liquids, for all three cases. It is worth noting 
that for UQ ,-W ?Q (150 bar) case values of F(0) cover 

Table I 

Case 

Quantity 
IX&-H,0 UC+-I&O 

1 bar f50bar 
IJO,-Na 

1 bar 

I. ai 2.75 x 10- 3 4.061 x w2 3.293 x IO-? 
2. tl2 3.65 x t0- 3 1.370 0.6456 
3. B¶ 2.497 x 10-Z 3.994 x x0- i 1.897 x lcz 
4. 81 30.49 2.688 17.842 
5. u, [m s-y 1.015 1.279 1.154 

Al [s- ‘1 3.05 x IO2 3.84x 1oa 3.46 x lo2 
6. A0 9.976x IO-’ 1.462 x IO”- 1.611 x IO-* 
7. E, 0.95 0.95 0.15 

qr [MW nl-2] 3.581 3.575 0.660 
8. AT,,EKJ 100 342 780 
9. AXmw K1 5WI400 5cO-1400 5c&1400 

10. A, 20.2-30.2 3.7-6.5 1-16.3 
11.. bv&,, 5.21 x lo-z 1.27x IO-’ 2.44 x 10-f 

__-_-- 
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20 21 22 23 24 25 26 27 20 29 30 

FIG. 6. Changes of heat fluxes at the interfaces I (qcv, qa and 
q,) and II (qr) with the dimensionless normalized vapour 

thickness, 1,. 

the range from 0 to 1. Values of F”(0) in each case, 
for both the hot and the cold liquids, can be calculated 
from equation (6). 

Figures 6-8 show the heat at the interfaces I (q,, qa 
and qev) and II (qr) as functions of the dimensionless 
vapour thickness A,, in the appropriate range for each 
case. 

For U02--H,O cases the heat flux at the molten 
drop interface, qf, remains almost constant, i.e. almost 
independent of liquid subcooling and, therefore, of 
the liquid coolant interface temperature gradient. This 
independence justifies assumption 6, although it is 
shown in ref. [ 121 that for water the absorption of the 

Heat flux IMW/m4 

20-,i 

15 - 

UO,- H,O 15Obar 

0’ 
\ 1 

4 5 6 

FIG. 7. Changes of heat fluxes at the interfaces I (qcv, qa and 
q,) and II (qr) with the dimensionless normalized vapour 

thickness, 1,. 

0 2 4 6 8 10 12 14 16 

A. 

FIG. 8. Changes of heat fluxes at the interfaces I (qcv, q6 and 
q,) and II (qr) with the dimensionless normalized vapour 

thickness, A*. 

q,-flux (of the order as shown in Table 1) requires 
about 0.5 mm (for sodium all qr is absorbed at the 
interface). For U02-H,O at 1 atm (Fig. 6) the heat 
flux associated with conduction through the vapour 
gap, qa, is smaller than the radiative flux, qr (see Table 
1, row 7). For the U02-H,O (150 atm) case, the heat 
flux qs is greater than qr for almost the whole range 
of a,. 

The case of UO,-Na presented in Fig. 8 (and in 
Fig. 9 with others) differs from U02-Hz0 cases. The 
high value of the liquid sodium thermal conductivity 
is responsible for that. For the range of L, between 9 

AL t - UO,- H,O lbar 

2 - UO,- H,O 1SObar 
3 - UO,- Na lbar 

0 5 

lo i: 2o 25 3o 

FIG. 9. Influence of the dimensionless, normalized vapour 
thickness, A,, on the temperature differences in molten fuel 
(AT,), and in liquid coolant (AT,). Note that in all cases 

T.,,= 3000K. 
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and 16, related to very small subcoolings (AT,, < 20 
K, see Fig. 9), the pattern of heat fluxes is similar to 
those in Figs. 6 and 7, with both qr z 2 MW m-’ (see 

Fig. 8) and AT, < 70 K (see ATr3 in Fig. 9) being even 
smaller than for water cases. The situation changes 
drastically when the lower limit of 1, is approached. 
This lower limit is adopted to be equal to 1 (although 
it occurs for subcooling of only about 100 K from 780 

K available). There are two facts, however, supporting 
this limit. Firstly, it coincides with the calculated tem- 
perature difference ATr, in the drop, of about 500 

K (the lower limit of AT,,,). Secondly, there is no 
experimental evidence that forced convection film 
boilings on axi-symmetrical bodies are stable when 

the vapour dimensionless normalized thickness, A,, 
approaches the value 1. (It is still worth adding that 
the presented model predicts only for the UO,-Na 
case that the upper limit of ATr,,, = 1400 K has to be 

present in the drop when coolant subcooling is smaller 
than AT,,,, ; this, however, happens for 1, % 0.4.) 

Figure 9 shows the temperature difference in the 

liquid coolant and in the molten drop (see assump- 
tions 4 and 5), for all cases considered, as functions 
of 1,. The lowest value of the temperature difference 

available in the molten drop, i.e. 500 K, is also 
marked. This figure presents a unique relation 
between bulk temperatures of the drop and the cool- 
ant when it is assumed that the molten drop interface 
temperature is set at 3000 K (for these temperatures it 
also determines the value of &+J. If for a given value 
of liquid subcooling, AT,, the temperature difference 
in the drop, AT,, is smaller than that shown in Fig. 9 
(for the same value of A,), the surface temperature 
will drop below 3000 K and solidification will occur. 

The same will happen if for a given temperature 
difference in the drop, AT,, liquid subcooling is greater 
than that shown in Fig. 9. It is also worth noting that 
the above conclusions are valid when one applies this 

unique relation to the initial temperatures of molten 
fuel and coolant, i.e. before the former enters the latter 
(since, in particular, the drop bulk temperature cannot 
be higher than the initial one). The particle diameter 
has to be specified. 

4.2. Conclusions 

From Fig. 9 it is clear that for cases U02-H,O (150 
bar) and, particularly, for UO,-Na (when the sodium 
subcooling is not very small), substantial temperature 
differences are required to maintain the drop in a 
molten state. Without such differences the dropvap- 
our interface temperature will fall below the value 
assumed (3000 K) at which solidification of the drop 
will start. A considerably stronger pressure pulse, in 
the further stages of vapour explosion, is required to 
induce drop fragmentation if any solidification has 
occurred. 

Although this solidification process is outside the 
scope of the presented model, three important con- 
clusions, related not only to the coarse pre-mixing 
stage of vapour explosion, but to the entire phenom- 

enon, can be drawn. These conclusions are based on 
estimates of the required temperature difference in the 
molten drop for each of the three cases. Although the 
model is limited to the stagnation point region, it 
clearly shows that : 

1. When the maximum temperature difference avail- 
able in the molten drop is lowest (i.e. AT,,, = 500 
K), the whole drop can be maintained in the molten 
state, for any liquid subcooling, only in the UO,-H,O 

(1 bar) case. 
2. Thermal conditions leading to a large coarse- 

mixture volume (which can result in an efficient, large- 
scale vapour explosion) are less restrictive for the 
U02-H20 (1 bar) case than for the other cases (UO1- 
Na being the most difficult to sustain if the sodium 
subcooling is not very small). 

3. Comparison of the two UO,-HZ0 cases shows 
that increasing the system pressure reduces the con- 

ditions necessary to sustain a fuel drop in the molten 
state. Therefore, the possibility of a steam explosion 
reduces with the system’s pressure. 

The last two conclusions, which are based on the 

model presented, are supported by the experimental 
evidence and other theoretical works related to the 
vapour explosion subject [ 14, 9, IO]. 
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APPENDIX 

Equation (1) neglecting the inertia effect, simplifies to 

F,!“(q,) = -1. (Al) 

Since F,(O) = 0, its solution can be written in the form : 

Fhv) = -~tl~+fC,d+C~~v. 642) 

From boundary and matching conditions on interface II 
(equations (6) and (17)), we have 

Cz = a,F;(O), C, = -a,FXO) 

and 

C, = -cIzaI (I-$)J(l+b,?). (A3) 

Using the last equation, the solution of equation (Al) can be 
written in the form 

F,(t)“)= -:~1-:a~a,(l-~)J(l+b,~)nl+Clq. 

(44) 

and 

(A5) 

F:(tl”) = -g.-a,aj(l-$)~(l+b,$). (A6) 

Equations (A4)-(A6) can now be used in boundary and 

matching conditions on interface I (equations (6) and (16)) ; 
therefore we have : 

MO) = ;F,h:) 
z 

F;(O) = $F:(rld) 
I 

C’(O) = &W/t) 

and 

F:(d) = 8182 a,+~F”(~d)+a,[~F”(?:)]:j 

x J(l+;Fl(n:){l+;F&:)+bx[BF,(s:)]ij). 

(47) 

It is clear from the last equation that for given value of qt 
(i.e. for assumed velocity gradient A, and vapour thickness 
6) one can find the Cz constant and the velocity field in the 
vapour gap is therefore determined. Further, using relation 
(A4) in equations (lo)-(13) (22) and (23) the temperature 
field and heat fluxes, on both interfaces, are determined. 
These heat fluxes can be expressed by the heat flux for simple 
conduction through stagnant vapour of the same thickness 
6 (see equation (24)) in the following way : 

qd z -k,dT, v*e WI 
dy v=a 

= k,t:(n;) g (TV - T,) = q0 yy 
E,(rli) 

where 

(A9) 

-WI,) = 

From equations (A8) and (A9) it is clear that coefficients 
d3 and d,, appearing in equation (25) are 

1 
d, = 6 

e&.) 
and d,=n$$$ 

” ” 

Note that once the temperature difference across the vapour 
gap (Tw- T,) is known, one can conduct the calculation for 
all three phases in a simple manner. 

For example, assuming velocity gradient A, and vapour 
thekness 6 (or qt or A,), coefficients d,,, d2, (for liquid 
coolant) and d,, (for molten drop; note that d,, = 1, since 
there is no evaporation on interface II) can be determined. 
Although all these coefficients are related to 4(O) (see Figs. 
2 and 3) they are in fact, through the first matching condition 
on interface I (i.e. F&f) = j*F,(O)), also dependent on ?J$ 
(or 6 or A,). As mentioned in Section 2.2, coefficients d,,, d,, 
and dir are the measures of effects : (i) evaporation (from the 
interface) and (ii) viscous forces (acting in the interface 
vicinitv). on the degree of departure of the interface heat 
fluxes iq, and qf) from the frictionless case (as expressed by 
eouation (14)). Summarizing: for aiven values of r,, T, and 
r)c (6 or A;) ohe can determine temperature differences-both 
in the molten drop (T,,-T,) and in the liquid coolant 
(T%- T,,), using heat balances on interfaces (see equation 
(25)). 
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EBULLITION EN FILM AVEC CONVECTION FORCEE DANS LA REGION D’ARRET 
D’UNE GOUTTE FONDUE ET APPLICATION AUX EXPLOSIONS DE VAPEURS 

R&urn-n explore le m&canisme de transfert de chaleur lit A I’explosion thermique. Le modele theorique 
de I’bbullition en film avec convection for&e est p&sent& pour la r&ion d’arret d’une goutte fondue 

asymttrique ; il prend en compte le fait que la substance chaude est fondue. Les equations d’impulsion au 
point d’arrit (Falkner-Skan) et d’tnergie, pour les liquides froids ou chauds et pour la couche de vapeur, 

sont rtsolues numtriquement avec un large domaine de conditions aux interfaces. Le modtile prtsentt, en 

couvrant un large domaine de conditions et de paramttres, est plus g6nkal que les cas discutks dans 

d’autres publications. Pour cette raison les rtsultats peuvent itre appliquks non seulement g 1’6tape du 
prtmClange grossier ti I’explosion de vapeur mais aussi g d’autres situations od la convection for&e avec 

trois phases apparait sur un corps axisymkique. 

FILMSIEDEN BEI ZWANGSKONVEKTION IM STAUGEBIET EINES 
GESCHMOLZENEN TROPFENS UND DIE ANWENDUNG AUF DAMPFEXPLOSIONEN 

Zusammenfassung-Die vorliegende Arbeit wurde im Rahmen einer Untersuchung der Wgrmeiiber- 
gangsmechanismen bei therm&hen Explosionen durchgefiihrt. Das theoretische Model1 des Film- 
siedens bei Zwangskonvektion in der NHhe des Staupunktes eines achsensymmetrischen geschmol- 
zenen Tropfens wird vorgestellt. Das Model1 ist besonders fiir die Vormischungsstufe der Dampfex- 
plosion von Bedeutung. Es beriicksichtigt die Tatsache, daB die he&. Substanz in dieser Stufe geschmolzen 
ist. Die Impulsgleichung (nach Falkner/Skan) und die Energieerhaltungsgleichung am Staupunkt werden 
fiir kalte und heil3e Fliissigkeiten sowie fiir die Dampfschicht numerisch gel&t, und zwar fiir einen weiten 
Bereich der Randbedingungen an der Oberfllche. Das vorgestellte Model], das einen weiten Bereich von 
Bedingungen und Parametern abdeckt, ist vie1 allgemeingiiltiger als die in anderen Veriiffentlichungen 
behandelten Fille. Aus diesem Grund kiinnen die Ergebnisse nicht nur auf die Vormischstufe der Dampfex- 
plosion angewandt werden, sondern such auf andere Fllle, bei denen eine dreiphasige Zwangskonvektion 

an einem achsensymmetrischen Kiirper auftritt. 

I-IJIEHOgHOE KklI-IEHklE I-IPH BbIHYTAEHHO$i KOHBEKqkill B 3ACTOfiHOR 30HE 
PACI-IJIABJIEHHOfi KAIIJ’IH I4 EI-0 MCI-IOJIb30BAH&,iE B CJIYYAlIX B3PbIBA I-IAPA 

~oTamra-MccnenyeTca h4exaHn3M Tennonepenoca npa TennoaoM B3pbIBe. lIpeno;lceHa TeopeTsrec- 

Kaa MODeJIb nJleHO’iHOr0 KHneHIlll npki BbIHyIKAeHHOfi KOHBeKUAH B 3aCTOiiIiOi-i 30He ORCWMMeTpH~HOfi 

pacnnaeneimoii Kannu. MOAeJIb 0nMcbmaeT cTanmo npeneapwTenbHor0 CMemHBainia npe a3pbrBe 

napa, Korna ropnsee BemecTBo pacnnaeneao. %icnemio pemaloTcr ypaBaeHen c0xpaHeHm-i HMnynbca 

(@onKHepa-CKsHa) II 3Heprmi ann HeHarpeTblx A HarpeTbrx xo4nKocTefi H ana cnoa napa npe caMblx 
pa3ne9Hhrx rpamirHblx ycnoakfnx Ha rpamiuax pa3nena. IIpeanoaeHHar Monenb n.na mHpoKor0 nuana- 

3oHa ycnoswii B napaMeTpoB aanae?cff 6onee o6o6meiiHofi, SeM o6cymaeMue B npyrwx ny6nurauanx. 
n0 3TOii npHYHHe nOny%HHble pe3ynbTaTbI MOryT npEiMeHRTbCa He TOJlbKO J(J‘a CTaLlHH npe.nBapwTe,,b- 
nor0 CMemABaHBa npa B3pbIBe napa, HO I.4 B npyrEix cnyqarx, Korna Tpe+asHan BbIHymneHHan KOHBeK- 

UUR npOHCXOfi&IT Ha OC‘ZCHMMeTpA’IHOM Tene. 


